

Manjit S. Kang Vice Chancellor Punjab Agricultural University, Ludhiana

Share of different sectors in India's Economy (2006-07)

(Services)

(Industry)

SUSTAINING AGRICULTURE

- Development and release of highyielding crop varieties
- Development of efficient crop production and protection technologies

SUSTAINING AGRICULTURE

- Use of quality agrochemicals (fertilizers, pesticides)
- Assured irrigation
- Developing crop varieties with greater water-use efficiency

 Biotechnology provides powerful tools for the sustainable development of agriculture, fisheries and forestry, as well as the food industry. When appropriately integrated with other technologies, it can be of significant assistance in meeting the needs of an expanding and increasingly urbanized population in the next millennium. (FAO, 2000)

BIOTECHNOLOGY ASPECTS: RELEVANCE TO AGRICULTURE

- Tissue culture/micropropagation
- Haploid/ doubled-haploid breeding
- Transgenic technology
- DNA-marker technology

TISSUE CULTURE MICROPROPAGATION

Micropropagation involves the production of plants from very small (1 mm) plant parts through tissue culture. **Micropropagation** of selected ornamentals, field, fruit and forest plant species is one of the best and most successful examples of commercial applications of tissue-culture technology.

APPLICATIONS OF MICROPROPAGATION

- 1. PRODUCTION OF SUPER-ELITE PLANTING MATERIAL (SEED) OF VEGETATIVELY PROPAGATED SPECIES.
- 2. QUICK SPREAD OF NEW VARIETIES OF VEGETATIVELY PROPAGATED SPECIES.
- 3. REJUVENATION OF OLD VARIETIES OF VEGETATIVELY PROPAGATED SPECIES.

 Micropropagation protocols developed at PAU: Total 17 species

MICROPROPAGATION PROTOCOL

FIELD CROPS

Sugarcane Potato

FLOURICULTURAL PLANTS

Gladiolus

Chrysanthemum

Carnation

Lilium

FRUIT CROPS

Citrus Banana Strawberry

FOREST CROPS

Eucalyptus

Neem

Poplar

Paulowinia

MEDICINAL PLANTS

Mentha Brahmi Safed musli *Aloe vera*

MASS PROPAGATION THROUGH MICROPROPAGATION

- Sugarcane
- Potato
- Mentha
- Banana

MICROPROPAGATION OF POTATO THROUGH MINITUBER PRODUCTION

POTATO (TC₁ GENERATION) IN THE FIELD

SPREAD OF MICROPROPAGATION TECHNOLOGY

- More than 500 million plants belonging to different plant species are annually produced through micopropagation in the world.
- There are more than 100 commercial tissue-culture units in India

HAPLOID/DOUBLED-HAPLOID BREEDING

Production of haploids/doubled haploids through anther and pollen culture from F_1 plants, and embryo culture from wide crosses is a very useful technique for shortening the breeding cycle and early release of varieties.

DOUBLED-HAPLOID BREEDING AT PAU

ANTHER CULTURE IN RICE

POLLEN CULTURE IN RICE

PRODUCTION OF WHEAT HAPLOIDS THROUGH WHEAT X MAIZE CROSSES

Field Trials of Anther & Pollen-Derived *indica* rice

APPLICATIONS

- In vitro production of haploids/doubledhaploids from F1 plants results in truebreeding plants in less than one year, which otherwise takes 7 to 8 generations through conventional methods.
- Several cultivars are either in tests or have been released in rice, wheat, maize, rapeseed and mustard in China, Canada, Denmark, USA and France.

TRANSGENIC TECHNOLOGY

- Useful genes cloned from viruses, bacteria, fungi, insects, animals, human beings and even the genes synthesized in the lab can be introduced into plants.
- Unlike conventional plant breeding, only the specific, cloned gene (s) is (are) being introduced without the co-transfer of undesirable genes from donor. No need for repeated backcrossing.

TRANSGENIC RESEARCH AT PAU

Development of Bt transgenic rice

Biologia Plantarum 50 (2): 311-314.

GENETIC ENGINEERING OF RICE FOR GREATER WATER-USE EFFICIENCY

Biologia Plantarum (In press)

Agrobacterium-Mediated Genetic Transformation of Sugarcane

T1 GENERATION OF SELECTED TRANSGENIC SUGARCANE PLANTS

INTERNATIONAL STATUS OF TRANSGENIC CROPS

- Total countries growing transgenic crops =25
- Total area under transgenic crops in the world= 125 MH
- Total crops: 10
- Total area under transgenic crops in India = 7.6 MH
- Area under Bt cotton in Punjab: About 5.5 lakh hectares (~0.5 MH) (i.e., about 90 % area is under Bt cotton)

India's Status James Clive: 2008

- USA: Soy, maize, cotton, canola, squash, papaya, alfalfa, sugarbeet
- Argentina: Soy, maize, cotton
- Brazil: Soy, maize, cotton
- India: Cotton
- Canada: Canola, maize, soy, sugarbeet
- China: Cotton, tomato, poplar, peunia, papaya, sweet pepper

Bt Cotton

Bt COTTON IN PUNJAB

- PAU has recommended 6 Bt cotton hybrids developed by different seed companies for cultivation in Punjab.
- Total area under cotton: 6.5 Lakh hectares (Area under Bt cotton : 90%).
- Pesticides have been reduced by almost 90%.
- State is heading for a white-gold revolution.

GENETICALLY MODIFIED FOODS FOR FUTURE

High-lycopene tomato Tomato with high flavonols / flavonoids as anti-oxidants Bt Brinjal Cavity-fighting apples GENETICALLY MODIFIED FOODS FOR FUTURE

- Golden rice
- Iron-pumping rice
- Golden brassica
- Proteinaceous potatoes
- Decaffeinated tea & coffee

MOLECULAR-MARKER TECHNOLOGY

- Development of saturated linkage maps
- DNA fingerprinting for varietal identification
- Phylogenetic and evolutionary studies
- Molecular markers and heterosis breeding

MOLECULAR-MARKER TECHNOLOGY

- Gene tagging
- Marker-assisted selection
- Marker-assisted alien-gene

introgression

Map-based gene cloning

Molecular linkage map of diploid wheat *Triticum monococcum*

1A	2A	3A	4A	5 A	6A	7 A
0.0 BE489323 27.4 bcd130 42.7 gdm33 47.9 cfd58 53.6 cfd2153 59.3 BE444890 mwg710.2 psr549.2 60.3 mwg2021.1 66.6 gwm1104 BE442682 barC604 74.2 BE449835 cfd218 cfd218 0.8 BE499835 cfd218 BE44301 82.7 BE443103 86.9 BE495292 101.4 BE443103 86.9 gdm36 lcfd55 lcfd59 131.2 gwm135 BE443103	0.0 18.5 19.6 23.6 25.1 33.9 52.3 57.8 58.7 50.6 54.9 54.7 58.7 59.1 58.7 58.7 59.1 58.499478 58.406808 53.7 50.6 58.406808 50.4 50.6 50.6 50.6 50.0 50.6 50.0 50.6 50.6 50.0 50.6 50.0 50.6 50.0 50.6 50.0 50.6 50.0 50.6 50.0 50.6 50.0	0.0 wmc147 21.4 gwm757 25.1 barc57 33.6 barc12 34.3 wmc11 49.8 cfd79 76.6 Gnu_A 95.5 barc618 96.7 gwm779 105.6 wmc79 126.5 barc67 126.8 wmc269 133.1 cfa2134 134.3 psr570 138.9 gwm121 150.9 ysr74 153.4 wmc492 168.6 barc152 170.5 wmc96.3 216.0 bcd131 228.6 wmc153 232.3 cfa2170 235.2 cfd22 244.1 wmc326 244.1 wmc326 243.3 gwm391	0.0 psr921 3.3 gwm397 0.0 wm614 4.1 wmc89 5.6 cd711 16.5 Ba2 33.0 cfa2173 46.2 gwm494 53.4 mwg2021.2 54.0 cd0484 79.9 mwg676	0.0 18.1 18.7 19.3 21.9 barc186 barc1 wmc150.2 cfd40 barc117 49.0 gwm443 59.5 60.6 gwm205 64.3 gwm205 64.3 gwm154 83.0 barc141 88.0 gwm186 94.5 cfd22 117.0 barc151 125.9 cfd12 130.0 gwm271 135.8 147.2 barc124.2 150.0 cfd26 barc141 wmc470.2 bcd98 KsuG14 20.4 cfd39 20.7 49.0 gwm25 cfd22 the cfd22 the cfd21 the cfd21 the cfd21 the cfd21 the cfd22 the cfd22 the cfd22 the cfd22 the cfd21 the c	0.0 cfd190 1.2 barc37 barc113 26.7 wmc179 44.0 wmc179 44.0 wmc177 60.1 gwm427 63.4 gwm1089 67.8 psr966 89.0 psr687 barc104 oped at	0.0 gwm471 36.2 barc70 47.9 gwm635 72.6 cfd31 93.5 cfa2049 100.9 wm6 102.0 gwm130 103.7 cfa2028 122.2 wmc405 123.9 wmc58 135.0 cfa2174 138.3 RC_A gwm573 wmc17 cfd68 wmc96.1 153.8 gwm473 163.7 barc69 192.1 mwg710.3 0.0 gwm332 11.8 cfa2019 0.0 gwm344 34.7 wmC673 PAU

Cereal cyst nematode resistance gene mapped in *T. monococcum*

Chrom 2

Stripe rust resistance gene mapped in *T. monococcum*

PYRAMIDING OF BACTERIAL BLIGHT RESITANCE GENES IN RICE THROUGH MAS

Pyramiding of Bacterial Blight resistance genes, xa5, xa13 and Xa21 in the background of PR106 and Pusa 44

BB reaction (artificial inoculation) of released varieties and pyramid lines

MAS: Basmati rice Improvement

*xa*13

RM339

Linked to amylose content

Semidwarf plants obtained in the BC₁F₃ progenies of the crosses Basmati 370/ IET 17948//Basmati 370 and Basmati 386/ IET 17948//Basmati 386

MAS: Pyramiding Leaf Rust (Lr) genes in wheat

MAS: Leaf rust reaction of *Lr*24 +*Lr*28 pyramid lines

Microbial biotechnology

Biofertilizers

Biopesticides

Bioherbicides

Biofertilizers

- PAU has developed seven *Rhizobium* cultures for seven leguminous crops -The technology has been transferred to Department of Agriculture, Punjab.
- Certain fungi are also being investigated for use as biofertilizers

Biopesticides

PAU has isolated some strains of *Trichoderma, Pseudomonas, Bacillus subtilis* and *Fusarium* for biocontrol of soil-borne plant pathogens of potato, chickpea, rice and sunflower.

Fungus to control nematodes in soil

Biopesticides

The potato seed-tuber treatment with *Trichoderma* has been recommended for control of black scurf disease of potato in Punjab.

Summary: AgBiotech products

- Micropropagated plants
- Transgenic crops
- Pyramided lines/varieties
- Gene Chips
- Biofertilizers
- Biopesticides
- Bioherbicides
- Disease diagnostic kits

Innovate

Shown at http://www.sportbikes.dhs.org

THANKS

